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a b s t r a c t

Vector autoregressions (VARs) are important tools in time series analysis. However, relatively little is

known about the finite-sample behaviour of parameter estimators.We address this issue, by investigating

ordinary least squares (OLS) estimators given a data generating process that is a purely nonstationary first-

order VAR. Specifically, we use Monte Carlo simulation and numerical optimisation to derive response

surfaces for OLS bias and variance, in terms of VAR dimensions, given correct specification and several

types of over-parameterisation of the model: we include a constant, and a constant and trend, and

introduce excess lags. We then examine the correction factors that are required for the least squares

estimator to attain the minimum mean squared error (MSE). Our results improve and extend one of

the main finite-sample multivariate analytical bias results of Abadir, Hadri and Tzavalis [Abadir, K.M.,

Hadri, K., Tzavalis, E., 1999. The influence of VAR dimensions on estimator biases. Econometrica 67,

163–181], generalise the univariate variance and MSE findings of Abadir [Abadir, K.M., 1995. Unbiased

estimation as a solution to testing for random walks. Economics Letters 47, 263–268] to the multivariate

setting, and complement various asymptotic studies.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Vector autoregressions have been extensively studied in

econometrics and continue to be one of the most frequently

used tools in time series analysis. However, little is currently

known about the properties of parameter estimators when

applied to finite samples of data, and especially in nonstationary

frameworks. In particular, the form and extent of estimator bias

and variance have not yet been fully investigated. In a paper

that is central to this issue, Abadir et al. (1999) (AHT) study

nonstationary multivariate autoregressive series, and derive an

approximate expression for the mean bias of the ordinary least

squares estimator of the matrix of autoregressive parameters,

in terms of the sample size T and VAR dimension k. They

consider estimation of a correctly-parameterised first-order vector

autoregression (a VAR(1)), with no constant or trend, given that the

data generating process is a k-dimensional Gaussian randomwalk.

Using a Monte Carlo simulation, they show that their ‘‘analytic

approximation’’ provides a good representation of bias in finite

samples, and for small k (AHT, Table I).
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The purposes of this paper are twofold. Firstly, we extend

the results given by AHT in a number of directions, building

upon previous studies by Stamatogiannis (1999) and Lawford

(2001, chapter 4). In broadening the scope of AHT, we assess

over-parameterisation of the estimated VAR model, by including

a constant, and a constant and deterministic trend. This creates

additional bias problems, as was suggested by simulation results

for the univariate case in Abadir and Hadri (2000, p. 97) and

Tanizaki (2000, Table 1). We also assess the effects of introducing

p − 1 excess lags into the estimated model. We use Monte

Carlo methods to simulate small sample bias, and then fit a

series of response surfaces using weighted nonlinear least squares.

Well-specified and parsimonious response surfaces are chosen

following diagnostic testing, and are shown to perform verywell in

out-of-sample prediction. In the correctly-parameterised setting,

the prediction error of our response surface is substantially less

than that of the AHT form, across the parameter space under

investigation.

Secondly, we focus attention on the variance and MSE of the

least squares estimator, and generalise the heuristic univariate

variance approximation of Abadir (1995) to rigorous response

surfaces.We develop response surfaces for variance, and show that

multiplying theOLS estimator by a scalar correction factor achieves

minimum MSE and removes most of the bias, at the expense of a

0304-4076/$ – see front matter© 2008 Elsevier B.V. All rights reserved.
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small increase in estimator variance.1 To our knowledge, no other

finite-sample approximations (analytic or otherwise), and few

simulations, were previously available for bias in the multivariate

over-parameterised cases, or for excess lags, or for variance in the

multivariate setting.

The paper is organised as follows. Section 2 introduces the

possibly over-parameterised VAR model and briefly reviews

existing finite-sample results. Section 3 outlines the response

surface methodology, presents the experimental design, and

proposes response surfaces for multivariate bias and variance,

based upon an extensive series of Monte Carlo experiments.

Section 4 concludes the paper. We represent vector (and scalar)

and matrix quantities as a and A respectively. Special vectors and

matrices include the k × 1 zero vector 0k and the k × k identity

matrix Ik.

2. Models and background

Let {xt}T1 be a k × 1 discrete time series that follows a purely

nonstationary VAR(1), where T is the sample size, the innovations

are independently and identically distributed with distribution D,

and Ω is positive-definite:

xt = xt−1 + εt , εt ∼ i.i.d.D(0k, Ω), t = 1, 2, . . . , T . (1)

We examine the finite-sample bias, variance and MSE of the least

squares estimator of (1), for each of the following estimatedVAR(p)
models:

Model A: xt = Φ̂xt−1 +
p−1∑
j=1

Γ̂jΔxt−j + ε̂t ,

Model B: xt = μ̂ + Φ̂xt−1 +
p−1∑
j=1

Γ̂jΔxt−j + ε̂t ,

Model C: xt = μ̂ + δ̂t + Φ̂xt−1 +
p−1∑
j=1

Γ̂jΔxt−j + ε̂t ,

where Δ is the backward-difference operator, and over-

parameterisation arises through inclusion of a constant (Model B),

a constant and time trend (Model C), and when there are multiple

lags, with p > 1 (Models A, B, and C).2 There are no elements in the

summations if p = 1. Zero initial values are chosen for simplicity

(x−j = 0k, j = 0, 1, . . . , p − 1), and to avoid the problems of bias

nonmonotonicity that can potentially arise when non-zero initial

values are considered.3

Proposition 1. The bias matrix B = E(Φ̂) − Ik is scalar, and bias

is invariant to Ω , for Models A, B, and C, if the error distribution D

is symmetric, and Ω is positive-definite. Furthermore, the variances

of each of the diagonal elements of Φ̂ are identical, and variance is

invariant toΩ , for Models A, B, and C, if D is symmetric, andΩ is both

positive-definite and diagonal.

1 See Hendry and Krolzig (2005, Section 4) for a similar form of bias correction,

after computer-automated model selection.
2 We are very grateful to the referees, who suggested that we generalise our

original models.
3 The correctly-parameterised univariate Model A, with k = p = 1,

was examined by Abadir and Hadri (2000), given a (nearly) nonstationary data

generating process, and non-zero initial values. They show, using numerical

integration, that the bias of φ̂ can be increasing in sample size T , due to the effect

of |x0|. This nonmonotonicity disappears under estimation of univariate Models B

and C, at the expense of higher bias. A small simulation study of (1) and Model A by

Lawford (2001), with k ≤ 6, p = 1 and x0 �= 0k , leads to the interesting conjecture

that bias nonmonotonicity also disappears when k > 1.

A proof is available from the authors on request. Abadir (1993)

uses some results on moment generating functions to derive a

high-order closed form (integral-free) analytical approximation to

the univariate finite-sample bias of φ̂ given Model A, k = p = 1,

and with |φ| = 1. The final expression is based upon parabolic

cylinder functions, and is computationally very efficient. Abadir

further shows that bias may be described more simply in terms

of exponential functions in polynomials of T−1, and develops the

following heuristic approximation:

bUNIV ≈ −1.7814 T−1 exp
(−2.6138 T−1

)
, (2)

where−1.7814 is the expected value of the limiting distribution of

T (̂φ −1), e.g. see Le Breton and Pham (1989, p. 562).4 Heuristic fits

such as (2) have been used elsewhere in the literature, e.g. Dickey

and Fuller (1981, p. 1064), and we distinguish here between these

approximations and the rigorous response surface approach that

is used in this paper. Despite the fact that only 5 datapoints are

used in the derivation of (2), it is accurate in-sample to 5 decimal

places for bias, and is more accurate than the special function

expression (see Abadir (1993, Table 1)). We found that (2) also

performs very well out-of-sample, at least to 1 decimal place of

−100×bias. Other studies that examine the exactmoments of OLS

in univariate autoregressivemodels, with a variety of disturbances,

include Evans and Savin (1981), Nankervis and Savin (1988), Tsui

and Ali (1994), and Vinod and Shenton (1996); see also Maeshiro

(1999) and Tanizaki (2000), and references therein.

In themultivariate setting, AHT considerModel A, k ≥ 1, p = 1,

and prove that B is exactly a scalar matrix, i.e. diagonal with equal

diagonal elements: B = diag(b, . . . , b), and that B is invariant to

Ω , given only a symmetric error distribution. Furthermore, they

develop a simple quantitative approximation tomultivariate finite-

sample bias (especially AHT, p. 166, and Abadir (1995, p. 264)):

BAHT ≈ bUNIVkIk ≡ b AHTIk. (3)

It is clear that bias is approximately proportional to the dimension

of the VAR, even when Ω is diagonal. To facilitate discussion

of cointegrating relations, AHT formulate their model as 	xt =
Ψ xt−1 + εt , where Ψ ≡ Φ − Ik. Since the bias of Ψ̂ is equivalent

to the bias of Φ̂ , our results may be compared directly to those in

AHT, for p = 1, and no deterministics.

Abadir (1995, p. 265) uses the univariate Model A (p = 1)

variance definition v = 2T−2sd2, with values for standard

deviation ‘‘sd’’ of normalised φ̂ taken from Evans and Savin (1981,

Table III), and performs a similar heuristic process to that used in

derivation of (2) for bias. This gives a variance approximation for

k = p = 1:

vUNIV ≈ 10.1124 T−2 exp
(−5.4462 T−1 + 14.519 T−2

)
, (4)

which is shown to be accurate to at least 7 decimal places in

small samples. Since the bias and variance of each of the diagonal

elements of Φ̂ are respectively identical, we may use MSE(̂φ) =
b2 + v directly, to compute the MSE.

In the following section, we present the Monte Carlo experi-

mental design, develop very accurate response surface approxi-

mations to multivariate bias and variance, and consider a simple

correction for the OLS estimator to have minimumMSE.

4 This constant can be calculated conveniently by using the expression 1 −
1
2

∫ ∞
0

u (cosh u)−1/2 du = 1−2
√
2 3F 2 (1/4, 1/4, 1/2; 5/4, 5/4; −1) ≈ −1.7814,

where 3F 2 is a hypergeometric function.
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3. Structure of Monte Carlo analysis

Response surfaces are numerical-analytical approximations,

which can be very useful when summarising and interpreting

the small sample behaviour of tests and estimators. They have

been applied to a variety of econometric problems by, inter alia,

Engle et al. (1985), Campos (1986), Ericsson (1991), MacKinnon

(1994, 1996), Cheung and Lai (1995), MacKinnon et al. (1999) and

Ericsson and MacKinnon (2002). See Hendry (1984) and Doornik

and Hendry (2007, chapter 15) for good introductions. Briefly, a

statistic τ is modelled as a (response surface) function f (·) of

relevant variables, that is usually formulated in line with known

analytical results. Monte Carlo is used to generate simulated

estimates τ ∗
i of τ , i = 1, 2, . . . ,N , for N experiments, where each

τ ∗
i is based upon M replications, and the parameters of f (·) are

estimated using an appropriate procedure, depending upon the

functional form. The method can be computationally intensive,

sinceM and N must be large if f (·) is to be accurately specified. To

avoid problems of specificity, the estimated f (·)must be subjected

to testing, and its out-of-sample performance assessed.

3.1. Monte Carlo design and simulation

The data generating process and models were introduced in (1)

and Models A, B, and C. We adopt a minimal complete factorial

design, which covers all triples (T , k, p) from:

T ∈ {20, 21, . . . , 30, 35, . . . , 80, 90, 100, 150, 200} ,

k ∈ {1, 2, 3, 4} , p ∈ {1, 2, 3, 4} , (5)

giving N = 400 datapoints. The sample sizes that we have

chosen are representative of those that are commonly used in

practice, and our design includes small k and p, so that the effects

of changes in VAR dimension and model lag can be explored.

From Proposition 1, and with no loss of generality, we set εt ∼
i.i.d.N(0k, Ik) in the simulations. We calculate the OLS estimate for

each combination of (T , k, p) in the parameter space, from which

we directly derive the bias. Since B is a scalar matrix, we may

estimate the scalar b by averaging over the estimated diagonal

elements of B. This results in a further increase in accuracy as k

increases. We simulate variance v similarly.5 The period of our

pseudo-random number procedure is much larger than the total

random number requirement. All simulations were performed

most recently on Pentium 4 machines, with 2.5 GHz processors

and512MBof RAM, runningGAUSS and/or PythonunderMicrosoft

Windows XP.

Where possible, our numerical results were checked with

partial exact and approximate results in the literature. These

include MacKinnon and Smith (1998, Figure 1), who plot bias

functions under Model B (k = p = 1), and Pere (2000, Table 3),

who reports values that correspond to variances in the same

model, in his study of adjusted profile likelihood. Evans and Savin

(1981, Table III) give bias and standard deviation for 2−1/2T (̂φ −1)
under Model A (k = p = 1), which agree closely (3 to 5 decimal

places) with our simulation results. Roy and Fuller (2001, Tables 1

and 6) report bias and MSE for T = 100, under univariate Models

B and C, for p = 1.

5 We experimented with a pseudo-antithetic variate technique, based upon

Abadir and Paruolo’s (2008) univariate ‘‘AV4’’, and were able to increase the speed

of the bias simulations by roughly 50%, for a given precision [Model A, p = 1].While

conventional antithetics are not generally applicable to the nonstationary setting,

the pseudo-antithetic is not valid either for some of the models considered above,

and is therefore not used in this paper.

Table 1
Estimated bias response surfaces bRS for Models A, B, and C. Response surfaces (6)

were estimated usingweighted nonlinear least squares.White’s heteroscedasticity-

consistent standard errors are given in parentheses, R
2
is the degrees-of-freedom

adjusted coefficient of determination, JB is the Jarque–Bera test statistic for

normality, asymptotically distributed as χ2 (2), � denotes significance at the 5%

level, and σ̂u is the residual standard error. Coefficients and standard errors are

given to 3 d.p. (to 5 d.p. for β̂6).

Model A Model B Model C

β̂1 0.320 −3.475 −8.522

(0.010) (0.013) (0.053)

β̂2 −2.044 −1.890 −1.744

(0.004) (0.005) (0.018)

β̂3 −1.124 −1.788 −1.410

(0.136) (0.094) (0.228)

β̂4 −1.861 −1.907 −2.632

(0.039) (0.030) (0.081)

β̂5 0.999 1.038 1.404

(0.010) (0.009) (0.020)

β̂6 0.00801 0.00621 0.00240

(0.00071) (0.00050) (0.00082)

R
2

0.9995 0.9996 0.9976

σ̂u 6.72 6.16 16.99

JB 1.35 8.95� 8.92�

3.2. Post-simulation analysis

We regressed the Monte Carlo estimates of bias and variance
under Models A, B, and C, on functions of sample size, VAR
dimension and lag order, to reflect the dependence of b and v upon
these parameters, and on the degree of over-parameterisation.
Following extensive experimentation, and motivated by (2), we
fit the following nonlinear bias response surface for each of the
models6:

(sbi )
−1 b (Ti, ki, pi) = (sbi )

−1 (β1 + β2 ki) T
−1
i

× exp
[(

β3 + β4 ki + β5 kipi + β6 k
pi
i

)
T−1
i

] + ui. (6)

The dependent variable b (Ti, ki, pi) is the simulated finite-sample
bias for sample size Ti, VAR dimension ki, and lag order pi, which
take values from (5), and ui is an error term. We correct for
Monte Carlo sampling heteroscedasticity using the term sbi , which
is the simulated sampling error standard deviation of bias over
replications (see Doornik and Hendry (2007, chapter 15), for
details). We denote the fitted values of the estimated response
surface by bRS, and estimated coefficients are reported in Table 1.
Convergence of the weighted nonlinear least squares routine was
very fast, and required few iterations. Selection criteria included
small residual variance and good in-sample fit, parsimony, and
satisfactory diagnostic performance. The response surface fits
are extremely good in-sample, and the Jarque–Bera statistic for
normality is small. The signs of all estimated coefficients apart from
the constant β1 remain the same across the different models. Note
that the asymptotic bias Tib (as Ti → ∞) is a linear function
of ki alone, which agrees with numerical observations, and that
β1 +β2 ki can be interpreted as the asymptotic component of bias,
with the exponential representing the (analytically intractable)
finite-sample ‘‘adjustment’’, which depends on ki and pi (and Ti).

6 Some earlymotivation for numerical refinement of (3), forModel A, with p = 1,

came from consideration of low-order partial derivatives of bAHT. Straightforward

algebra gives (for T ≥ 1) bAHT < 0, ∂bAHT/∂k < 0, ∂2bAHT/∂k2 = 0, (for

T ≥ 3) ∂bAHT/∂T > 0, ∂2bAHT/∂k∂T > 0, (for T ≥ 5) ∂2bAHT/∂T 2 < 0.

Upon comparing these theoretical partials with approximate numerical partial

derivatives from simulated data, it is found that each holds, except for ∂2b/∂k2 = 0

(simulations suggest that ∂2b/∂k2 > 0, for T not too large). This finding suggested

that improvementswere possible over (3), and especially that k entered the formula

in a more complicated manner than in (3).
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Table 2
Simulated scaled bias in Models A, B, and C, for p = 1, and AHT and Model A approximations. All reported bias values have been multiplied by −100, b is the simulated

Model A bias, bAHT is the AHT approximation (3) to Model A bias, bRS is the response surface approximation (6) to Model A bias, b is the simulated Model B bias, and b̃ is the

simulated Model C bias. In-sample points correspond to k = 1, 2, 3, 4 and T = 25, 50, 100, 200.

T VAR dimension (k)

1 2 3 4 5 6 7 8

b 6.4 13.5 20.0 26.1 31.8 37.1 42.1 46.7

bAHT (6.4) (12.8) (19.3) (25.7) (32.1) (38.5) (44.9) (51.3)

25 bRS [6.4] [13.5] [20.1] [26.2] [31.9] [37.2] [42.1] [46.7]

b 19.2 25.0 30.6 35.9 40.9 45.7 50.2 54.5

b̃ 35.3 40.0 44.5 49.0 53.2 57.3 61.2 64.9

b 3.4 7.2 10.8 14.3 17.6 20.9 24.0 27.0

bAHT (3.4) (6.8) (10.1) (13.5) (16.9) (20.3) (23.7) (27.1)

50 bRS [3.3] [7.1] [10.8] [14.3] [17.8] [21.1] [24.3] [27.3]

b 10.1 13.4 16.7 19.9 23.0 26.0 28.9 31.8

b̃ 19.0 21.8 24.7 27.5 30.3 33.0 35.7 38.3

b 1.7 3.7 5.6 7.5 9.3 11.1 12.9 14.6

bAHT (1.7) (3.5) (5.2) (6.9) (8.7) (10.4) (12.1) (13.9)

100 bRS [1.7] [3.7] [5.6] [7.5] [9.4] [11.2] [13.0] [14.8]

b 5.2 7.0 8.7 10.5 12.2 14.0 15.7 17.3

b̃ 9.9 11.4 13.0 14.6 16.3 17.9 19.5 21.1

b 0.9 1.9 2.9 3.8 4.8 5.8 6.7 7.6

bAHT (0.9) (1.8) (2.6) (3.5) (4.4) (5.3) (6.2) (7.0)

200 bRS [0.9] [1.9] [2.9] [3.8] [4.8] [5.8] [6.8] [7.7]

b 2.6 3.6 4.5 5.4 6.3 7.3 8.2 9.1

b̃ 5.0 5.8 6.7 7.6 8.4 9.3 10.2 11.1

b 0.4 0.9 1.4 1.9 2.4 2.9 3.4 3.9

bAHT (0.4) (0.9) (1.3) (1.8) (2.2) (2.7) (3.1) (3.5)

400 bRS [0.4] [0.9] [1.4] [1.9] [2.4] [2.9] [3.4] [3.9]

b 1.3 1.8 2.3 2.7 3.2 3.7 4.2 4.6

b̃ 2.5 3.0 3.4 3.9 4.3 4.8 5.2 5.7

b 0.2 0.5 0.7 1.0 1.2 1.5 1.7 2.0

bAHT (0.2) (0.4) (0.7) (0.9) (1.1) (1.3) (1.6) (1.8)

800 bRS [0.2] [0.5] [0.7] [1.0] [1.2] [1.5] [1.7] [2.0]

b 0.7 0.9 1.1 1.4 1.6 1.9 2.1 2.4

b̃ 1.3 1.5 1.7 1.9 2.2 2.4 2.6 2.9

We recalculate Table I in AHT as Table 2 in this paper, with
increased accuracy, with additional results reported for T =
400, 800 and k = 6, 7, 8, and correcting for a typo in AHT Table I:
(T , k) = (25, 5). It is convenient to interpret the scaled bias
values as percentages of the true parameter value, e.g. in Model
A, given (T , k) = (25, 8), and p = 1, the absolute bias of each
of the estimated parameters on the diagonal of Φ̂ is 46.7% of the
true value (unity). Clearly, absolute bias is strictly increasing in k
and decreasing in T . As T increases, bias goes to zero, as is well-
known from asymptotic theory. We see that bAHT gives a good
approximation to bias for k small, and especially for k = 1, where
(3) reduces to the excellent heuristic approximation (2). However,
as k increases, bRS provides much closer approximations to bias,
even for T quite large. Out-of-sample points reported in Table 2
for bRS are combinations of k = 5, 6, 7, 8, and T = 400, 800.
While bAHT is only applicable for correctly-parameterised Model A,
our response surfaces can be used when p > 1, and also when
deterministics are included. The out-of-sample fit appears to be
excellent for all T , and up to about k = p = 6 (as k and p jointly
become large, with small T , the term kp will dominate the bias
approximation, and out-of-sample predictions should be usedwith
particular caution). Although the response surfaces are developed
with small sample rather than asymptotic considerations in mind,
it is interesting to approximate univariate asymptotic bias by
setting k = p = 1 and letting Ti → ∞ in Tib

RS, from (6), which
gives Tib

RS = β̂1 + β̂2 of approximately −1.7, −5.4 and −10.3 in
Models A, B and C respectively.

Kiviet and Phillips (2005, equation (14), and Figure 1) consider
univariate Model B, where the data generating process can
have a non-zero drift, and write autoregressive bias in terms
of ‘‘g-functions’’ g0 (T ) and g1 (T ), which they calculate using
simulations. The function g0 (T ) represents least squares bias
when there is a zero drift in the data generating process, while

g1 (T ) appears as the bias increment due to non-zero drift.

Our Eq. (6) simplifies (when k = p = 1) to g0 (T ) ≈
−5.3654 T−1 exp

(−2.6513 T−1
)
, which provides a convenient

means of calculating g0 (T ) without further simulations.

Using (4) to motivate the choice of functional form, we fit the

variance response surface:

(svi )
−1v (Ti, ki, pi) = (svi )

−1 (γ1 + γ2 ki) T
−2
i

× exp[(γ3 + γ4 ki + γ5 pi + γ6 kipi) T
−1
i

+ (
γ7 kipi + γ8 k

pi
i

)
T−2
i ] + ui, (7)

where v (Ti, ki, pi) is the simulated finite-sample variance, and svi
is the simulated sampling error standard deviation of the variance

over replications. In estimating (7), we did not use datapoints

for which Ti = 20, . . . , 24 (and so N = 320), since variance

becomes very large for such small sample sizes, which makes

it very difficult to specify good response surfaces across the full

parameter space. Estimated response surfaces vRS are given in

Table 3, and are seen to fit very well. The signs of each of the

estimated coefficients, except for γ1, remain the same across the

models, the Jarque–Bera statistic is relatively low, and vRS provides

a very good approximation in-sample. The out-of-sample variance

approximation should be used with caution as k and p jointly

exceed about 5 or 6, with small T , again due to the effect of the

term kp. We note that no variance approximationswere previously

available for over-parameterised models, excess lags, or even for

k > 1. Similarly to the bias response surfaces, the asymptotic

variance T 2
i v (as Ti → ∞) is a linear function of ki alone, and

γ1 + γ2 ki can be interpreted as the asymptotic component of

variance, with the exponential term again representing the finite-

sample ‘‘adjustment’’, which depends upon ki and pi (and Ti). The

dependencies of bias and variance on T , k, and p are depicted in
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Fig. 1. Bias response surfaces: scaled bias against T , for k = 1, 2 and p = 1, 2, for Models A, B, and C. Simulated values are represented by diamonds (k = 1) and squares

(k = 2).

Table 3
Estimated variance response surfaces vRS for Models A, B, and C. Response

surfaces (7) were estimated using weighted nonlinear least squares. White’s

heteroscedasticity-consistent standard errors are given in parentheses, R
2
is the

degrees-of-freedomadjusted coefficient of determination, JB is the Jarque–Bera test

statistic for normality, asymptotically distributed as χ2 (2), �� denotes significance

at the 1% level, and σ̂u is the residual standard error. Coefficients and standard errors

are given to 3 d.p.

Model A Model B Model C

γ̂1 −0.345 10.430 26.230

(0.055) (0.082) (0.150)

γ̂2 10.400 9.895 10.104

(0.040) (0.049) (0.087)

γ̂3 −4.469 −9.680 −17.051

(0.203) (0.192) (0.250)

γ̂4 −5.302 −4.979 −4.801

(0.077) (0.083) (0.114)

γ̂5 1.245 2.059 4.751

(0.093) (0.076) (0.102)

γ̂6 2.925 2.957 2.970

(0.041) (0.035) (0.047)

γ̂7 13.233 11.646 14.668

(0.884) (0.767) (0.966)

γ̂8 0.993 0.889 0.923

(0.041) (0.033) (0.045)

R
2

0.9991 0.9990 0.9982

σ̂u 2.58 2.51 3.40

JB 91.03�� 46.38�� 30.22��

Figs. 1 and 2, which plot scaled response surfaces −100 × bRS and

10, 000 × vRS, against T , for Models A, B, and C, with k = 1, 2 and

p = 1, 2.

Bias and variance are not the only criteria to be used in

comparison of time series estimates, and the mean squared error,

MSE(̂φ) = b2 + v, is often of interest. For univariate Model A

(p = 1), Abadir (1995) defines λ as a correction factor such that

MSE(λφ̂) is minimised, and bm and vm as the bias and variance of

the corrected OLS estimator λφ̂, with:

λ = 1 + b

v + (1 + b)2
, bm = −v

v + (1 + b)2
, vm = λ2v, (8)

when φ = 1. Eqs. (6) and (7) may be now combined to give an
approximation to MSE, and by substitution of response surface
values for bias and variance into (8), we are able to calculate λ
for various T , k, and p. As an illustration, correction factors are
reported in Table 4, for p = 1 and Model A, which displays
qualitatively similar results to those in Abadir (1995, Tables 2
and 3). It is clear that OLS (λ = 1) does not achieve minimum
MSE. It is also shown that the corrected OLS is almost unbiased,
unlike OLS. From Table 4, λ increases monotonically with k and
decreases monotonically with T (asymptotically, the OLS achieves
minimum MSE). The correction can be particularly large for small
T , e.g. (T , k) = (25, 5) implies a correction of 32%. The corrected
estimator is much less biased than the OLS, and bm tends to zero
more rapidly than b. However, this reduction in bias comes at
the expense of a small increase in the variance of the corrected
estimator, vm. It is seen that b2 forms a much larger proportion of
MSE than variance for k ≥ 3, although this does not hold following
the minimumMSE correction; and that MSE efficiency is generally
decreasing in T and k.

4. Concluding comments

We have performed an extensive set of Monte Carlo experi-
ments on the bias and variance of the OLS of the autoregressive
parameters, given a data generating process that is a purely non-
stationary VAR(1), where the estimated model is a possibly over-
parameterised VAR(p), for small sample sizes, and various VAR
dimensions and lag lengths. Although the univariate framework
has been the subject of much research, a comprehensive multi-
variate simulation study has not previously been performed. We
estimate parsimonious and computationally convenient response
surfaces for bias and variance, that are much more accurate
and more general than existing approximations. In this way, we
improve numerically upon existing finite-sample analytical bias
results, and extend them to p > 1 and deterministics, and also
extend existing finite-sample variance results to k > 1, p > 1,
and to deterministics. Finally, we investigate the correction factors
required for the OLS to achieve minimum MSE and show that this
correction can significantly reduce bias, at the expense of a small
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Table 4
Minimum MSE correction in Model A, for p = 1. λ is a correction factor, such that λφ̂ attains minimum MSE, br is the bias ratio≡corrected bias/OLS bias, vr is the variance

ratio≡corrected variance/OLS variance
(
vr ≡ λ2

)
, bc and ‘‘x/y’’ indicate that b2 forms x% of MSE under OLS, and corrected b2 forms y% of minimised MSE, me is the MSE

efficiency≡MSE after correction/MSE under OLS (×100). All values are computed using the appropriate response surface approximations (6) and (7). In-sample points

correspond to k = 1, 2, 3, 4 and T = 25, 50, 100, 200.

T VAR dimension (k)

1 2 3 4 5 6 7 8

λ 1.05 1.12 1.19 1.26 1.32 1.39 1.46 1.52

br 0.23 0.24 0.26 0.28 0.31 0.34 0.37 0.40

25 vr 1.11 1.25 1.41 1.58 1.75 1.94 2.13 2.32

bc 24/1 42/3 54/5 61/7 67/10 71/13 74/15 77/19

me 86 75 69 66 65 64 65 66

λ 1.03 1.07 1.11 1.15 1.19 1.23 1.28 1.32

br 0.12 0.11 0.12 0.12 0.13 0.13 0.14 0.15

50 vr 1.06 1.14 1.23 1.32 1.41 1.52 1.63 1.74

bc 23/0.4 42/1 53/1 61/2 67/2 71/3 74/3 77/4

me 82 67 58 52 48 45 43 42

λ 1.02 1.04 1.06 1.08 1.10 1.12 1.14 1.16

br 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06

100 vr 1.03 1.07 1.12 1.16 1.20 1.25 1.30 1.35

bc 23/0.1 41/0.2 53/0.3 61/0.4 66/0.5 71/0.7 74/0.8 77/0.9

me 80 63 53 46 41 37 34 32

λ 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08

br 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03

200 vr 1.02 1.04 1.06 1.08 1.10 1.12 1.15 1.17

bc 23/0.0 41/0.1 53/0.1 60/0.1 66/0.1 70/0.2 73/0.2 76/0.2

me 78 61 50 43 38 34 30 28

λ 1.00 1.01 1.01 1.02 1.02 1.03 1.04 1.04

br 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

400 vr 1.01 1.02 1.03 1.04 1.05 1.07 1.07 1.08

bc 23/0.0 41/0.0 52/0.0 60/0.0 66/0.0 70/0.0 73/0.0 76/0.1

me 78 60 49 41 36 32 29 26

λ 1.00 1.00 1.01 1.01 1.01 1.01 1.02 1.02

br 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

800 vr 1.00 1.01 1.01 1.02 1.02 1.03 1.04 1.04

bc 23/0.0 41/0.0 52/0.0 60/0.0 66/0.0 70/0.0 73/0.0 76/0.0

me 77 60 48 41 35 31 28 25

Fig. 2. Variance response surfaces: scaled variance against T , for k = 1, 2 and p = 1, 2, for Models A, B, and C. Simulated values are represented by diamonds (k = 1) and

squares (k = 2).

increase in estimator variance. Our results may provide guidelines
for applied researchers as to the behaviour of VAR models, given
that relatively short samples and nonstationary data are often rel-
evant in empirical work.

Our work complements important asymptotic treatments by
Phillips (1987a) in the univariate framework, and Park and

Phillips (1988, 1989), Phillips (1987b), and Tsay and Tiao (1990)
in the multivariate setting. Our results may also be useful
when studying the derivation of exact formulae (for instance, in
conjunction with work by Abadir and Larsson (1996, 2001), who
derive the exact finite-sample moment generating function of the
quadratic forms that create the basis for the sufficient statistic
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in a discrete Gaussian vector autoregression). Exact analytical
bias expressions may involve multiple infinite series of matrix-
argument hypergeometric functions (generalising, e.g. Abadir
(1993)). When such series arise in other areas of econometrics,
they are generally complicated and may be difficult to implement
for numerical evaluation. We may, therefore, need to rely upon
approximations in practice, even when the exact formulae are
available.
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